MACLAURIN SERIES : Power series for ln(1+x)

Let   f(x)  = ln(1+x)    so     f(0) = ln 1 = 0
       f '(x)  = 1/(1+x)    so   f '(0) = 1
       f ''(x)  = -1/(1+x)^2    so   f ''(0) =  -1
       f '''(x)  =  2/(1+x)^3    so   f '''(0) =   2
       .....
Therefore,

ln(x+1) =  x - (x^2)/2! + 2(x^3)/3! -6 (x^4)/4! + ...
             =  x -(x^2)/2 + (x^3)/3 - (x^4)/4!  + ....+ ((-1)^(n+1))(x^n)/n +...

0 comments:

Post a Comment

 
Learn Math, It Is Easy © 2011 | Designed by Ibu Hamil, in collaboration with Uncharted 3 News, MW3 Clans and Black Ops