MACLAURIN SERIES: Standard Power Series

1.   sin x = x - (x^3)/3! + (x^5)/5!-  for all values of x.

2.   cos x = 1 -  (x^2)/2! + (x^4)/4!- for all values of x.

3.   e^x   = 1 + x + (x^2)/2! +  (x^3)/3! +  (x^4)/4!+  for all values of x.

4.   ln(1+x) = x - (x^2)/2 +  (x^3)/3-...   for all x in the interval of   ( -1,1]

MACLAURIN SERIES : Power series for ln(1+x)

Let   f(x)  = ln(1+x)    so     f(0) = ln 1 = 0
       f '(x)  = 1/(1+x)    so   f '(0) = 1
       f ''(x)  = -1/(1+x)^2    so   f ''(0) =  -1
       f '''(x)  =  2/(1+x)^3    so   f '''(0) =   2
       .....
Therefore,

ln(x+1) =  x - (x^2)/2! + 2(x^3)/3! -6 (x^4)/4! + ...
             =  x -(x^2)/2 + (x^3)/3 - (x^4)/4!  + ....+ ((-1)^(n+1))(x^n)/n +...

MACLAURIN SERIES : Power series for Sin x


Let     f(x) =  sin x   so    f(0)    =  0
        f '(x)  = cos x   so    f '(0)  =  1
        f ''(x) = - sin x  so    f ''(0) =  0
        f '''(x) = -cos x  so    f '''(0)= -1
        .
        .
        .

using Maclaurin Theorem,

sin x = f(0) + xf '(0) + ( (x^2)/2!) f ''(0) + ( (x^3)/3!) f '''(0) + ...

sin x = x - ( (x^3)/3!) + ( (x^5)/5!)+...+ ((-1)^n) (x^(2n+1))/(2n+1)!)+...


 
Learn Math, It Is Easy © 2011 | Designed by Ibu Hamil, in collaboration with Uncharted 3 News, MW3 Clans and Black Ops